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" (ABSTRACT) [ S
This report develops a technique for bounding the maximum voltages
and currents at terminations of a multiconductor transmission line (MTL)
located behind an aperture-perforated conducting screen excited by an i
electromagnetic pulse. The electromagnetic field is coupled through a
small aperture to provide the excitation of a multiconductor transmission
line behind the aperture. A model is presented in terms of external and

internal sources which in turn creates traveling waves on the mulci-

conduciur transmission line. The latter transfer energy to the termina-
tions. The energy at a termination is translated to voltages and cur-
rents from which the upper bounds are determined. These upper bounds
are obtained using vector norms and associated matrix norms. The
formulation is presented in the frequency domain and transformed to

the time domain to obtrain useful upper bounds for transient analysis

of multiconductor transmission line geometries with aperture excitatiom.
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CHAPTER I

INTRODUCTION

In designing some svstems, the designer should be able to charact-
erize the penetration of electromagnetic pulses (EMP) or lightning
signals through apertures of general shapes as well as quantify ﬁhe
effects of the coupled energy on transmission lines located in the
vicinity of the aperture.

Apertures that are of concern to the designer are usually electro-
magnetically small over the spectrum of the EMP, or lightning, and their
existence may be for some purpose, e.g., windows, open access holes, or
they may be unintentional as in the case of cracks around doors or
plates covering access ports or poor electrical seams {1l]. Small in
the sense of electromagnetic penetration implies that the maximum
dimension of the aperture is small compared with the wavelength of the
time-harmonic electromagnetic field. The analysis of the coupling
{(penetration) problem has been investigated by a large number of people
since 1897. The first scientist to propose a solution was Lord
Rayleigh [2,3], whose solution was expressed as an ascending power
series of the wavenumber k(}'%go where A is the wavelength. Bethe [4]
presented the results for the leading terms in the Rayleigh method by
using a scalar potential function approach. Bouwkamp [3] used a set of
coupled, integro-differential equations to solve the problem. Recently,
some have used an integral equation approach to tackle the problem.

Notabie among them are Butler and Umashankar [6],[7].




The coupling of the energy from an incident electromagnetic wave
to a transmission line located behind an aperture-perforated conducting
screen has been investigated by many engineers and physicists in the
past decade. Kajfez [8] has computed the coupled energy by the use of
equivalent electric and magnetic dipole moments. He has derived the
equivalent sources of a transmission line model by using both mode-
matching and reciprocity techniques.

Butler and Umashankar [9] have approached the problem numerically
by the method of moments, and have formulated integro-differential
equations for a finite~length wire with arbitrary orientation behind an
arbitrarily shaped aperture. They have also taken into consideratiom
the scattered energy into the aperture by the wire after wire
excitation. Lee and Yang [10] have solved the problem using transform
techniques, and have obtained the same equivalent sources as Kajfez [8].
In addition they have determined the effects of a wire being very close
to the aperture. Davis [11] has developed a model using a method
spatially equivalent to Lee and Yang [10] method. He has also come up
with a capacitive term in his model which is not in Lee and Yang. The
importance of the capacitance occurs when the wire is close to the
aperture causing a capacitive discharge of the aperture region by
currents on the wire.

Davis (11]) has also found a method for bounding the maximum voitage
and current levels at terminations of a wire behind an aperture. In his

analysis, he has approached the problem both in the frequency and time

domain.
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This report extends the bounding problem of a single wire to the
problem of obtaining an upper bound for the computation of the voltages
and currents at terminations of multiconductor transmission lines (MTL)
located behind an aperture-perforated conducting screen. The computa-
tions are carried out in both frequency and time domains. There are
several stages that lead to the final results.

In Chapter 1I, the electromagnetic field coupling through small
apertures is discussed. This is then extended in Chapter III to the
excitation of a MIL where a model is presented in terms of external and
internal sources which in turn create traveling waves on the MTL. These
waves transfer the coupled energy to the terminations. The availatle
energy found at the terminations is translated to voltages and currents
by impedance transformations. Finally, the bounds on the voltages and
currents are obtained in Chapters IV and V using vector norms and
associated matrix norms. The discussion is closed with the presentation
of comprehensive examples which elaborate on the use of the techniques
to find upperbounds on the signal levels in both the frequency and time

domain.




CHAPTER II

ELECTROMAGNETIC FIELD COUPLING THROUGH SMALL

APERTURE IN A CONDUCTING SCREEN

In this chapter the equivalent electric and magnetic dipoles
representation of an aperture is illustrated and the basic formulas
are given for this problem. The presentation is tutorial and the
scope is limited to the discussion of techniques which may be en-
countered in application. The development follows the procedures
of Butler [13].

Ideally, the problem will be discussed for a small aperture in
an infinite planar screen. O0f course, in prac:i;al problems, one
never can encounter an infinite or totally flat screen. However, if
the following conditions are satisfied, then one can replace the
real world problem with an ideal one:

1. The minimum distance across the surface of the screen

should be large relative to the wavelength in the medium.
2. The minimum radius of the curvature of the screen should
he large compared with the wavelenght. }
3. The point of observation should be close to the surface
of the screen relative to the minimum distance across the
screen.
4. The point of observation should not be close teo the outer

edge of the screen.

w
-

The edges of the aperture should not be close to the edges

of the screen.




In general, the problem of concern is showm in Figure (1), where

one sees an infinite conducting screen with an aperture (A) cut in
it. The screen is extremely thin and separates the space into two
parts, each characterized by u (medium permeability) and ¢ (medium

permittiviry) where ¢ can be complex to account for a lossy medium.

- 44‘ ——— —. ——

On each side of the screen, there are electric and magnetic sources

BROT AP

3; and E+ which are known impressed currents, and give rise to the

excitation of the aperture.

One can show [14] that the diffracted field by a small aperture
can be represented approximately by radiation from equivalent elec-

4 tric and magnetic dipoles. Figures (2) and (3) depict the idea of

j electric and magnetic dipole representation for an aperture. Note
. that in both cases the equivalent dipoles radiate in the presence
of screen when aperture is completely closed. Also, observe that
1 the electric dipole is in the same direction of incident electric
field, whereas the magnetic dipcle is in opposite direction of the
incoming magnetic field.
The moments of these equivalent electric and magnetic dipoles
are related to the known exciting fields by special constants called
4 polarizabilities. (See Appendix A for details.) For the case of
Figure (1), one can replace the aperture (A) by equivalent dipoles,
and the moments of these dipoles can be related to the polarizabi-

lities [1l] as

- + " | _Sg=,~- Sc+ - P
- = = 4 A - 2z
T TP,z e, ’.Fz (r)) = E] (ro)_l (e}

|
1
g
i
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Location of sources with respect to
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A (d) (&) (£)
},f Figure (2). Equivalent electric and magnetic dipole representation '
g . of an aperture [13]: (a) electric field incident on
-‘ screen without aperture, (b) electric field incident
’ on screen with aperture, (¢) equivalent electric

dipole on screen with closed aperture, (d) magnetic
field parallel to screen, (e) magnetic field and screen
with aperture, (f) equivalent magnetic dipole on screen.
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prerE . BUa) - ﬁsc*'(f-o)] (2)

A

where Bet is the moment of the equivalent electric dipole, Eth is

called the short-circuit electric field (field which would exist if
there was no aperture), ;o is the point of evaluation located in

the aperture, and ﬁSCt(;o) is the short-circuit magnetic field.

The plus and minus signs represent the regions of the positive and
negative z respectively.

In addition, the constants Go and ;; are the electric and
magnetic polarizabilities respectively; the latter is a dyad defined 1
as o = (o xx)xx + (am’yy)yy. Thus Equation (2) can be written

a m,

in component from as

"

r .z Se=,z y _ pSetim

Pa,x - " c"xn,xx[l}x (ry) - B (x,) (32)
+ _z Sc=,= | _ gSct .=

o,y T F am,nyIy (rg) - B (ro)] (3)
-+ + . + "

by P R PI P (30)

The equivalent dipoles are located at ;o on the screen with the

pair E;t E;rplaced on the positive side of the closed surface, and . j

Ee, E;' placed on the negative side of the closed surface. ;

-+
As seen from Equation (1), pe' is perpendicular to the screen :
- =Sc¥ o
surface while the direction of pm* is determined by HSC'(ro) and
the shape of the aperture through ::. Now, at the present stage,

one is able to calculate the field which passes through a hole in

a conducting surface as well as the field which scatters back.

Consider Figure (3) as depicted in the two parts. Note that the
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direction of two electric dipoles are opposite to each other in two
regions as are the direction of two magnetic dipoles.

Considering Figure (3b), one can write:

E i3 - Bt + 8@ + E®G) (4a)
i ¥@) = B5%@) + 8% @ + i@ (4b)

where Ei(;) and ﬁ*(;) are total electric and magnetic fields present
at point (r) in region II or I corresponding to the (+) and (=)
respectively. The (e)and (m) superscripts denote the fields of the
electric and magnetic dipoles in the presence of the plane con-
ductor, and the Sc denotes the short-circuit fields defined
previously.

The electric and magnetic fields at a point (r) due to electric
and magnetic dipoles located at (;0) in a homogeneous space of

infinite extent are given by [13,15,16]

- l =

E* == " x(pexVG) (5a)
-e . -

H =~ jw pexVG (5b)
-m - -
E" = juu pmeG (5¢)
i .- 7x (p_%7G) (5d)

where G is the free space Green's Function defined as:

G(t,7) =+ (6)
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Substituting Equations (5) into (4) and using image theory, one

obtains:

E¥E) = B3 - % vx(p 296 (F,2 ) ]

+ 230 u smi'xvc&,;o) (7
i@ = 8% - zjwsefxvc(E,Eo)
- 4+ - -
- 2Vx[pm’xVG(r,r°)] (8)

If aperture referance is centered at the coordinate origin, then
;o becomes a zero vector in the above equations. The above equa-
tions are valid in the distant region of the aperture (at least omne
aperture dimension away).

The merit of the above approximations for computing fields de-
pends on the electrical size of the aperture, the distance of observa-
tion point from the aperture, and the choice of the coordinate

origin with respect to which the dipole moments are calculated.

The details of dipole approximation are given in Appendix (B).

el
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CHAPTER III
ELECTROMAGNETIC EXCITATION OF MULTICONDUCTCR
TRANSMISSION LINES THROUGH AN APERTURE-PERFORATED
CONDUCTING SCREEN

In this chapter, the electromagnetic excitation of multiconductor
transmission lines (MTL) located behind an aperture-perforated conduct-
ing plane is developed using the procedures and method of Kajfez [12].
In order to do this development systematically, an aperturé representa-
tion by dipoles is discussed which notationally is different from the
representation introduced in chapter II. The equivalent source models
are then derived using methods introduced by Kajfez [12].

Consider Figure (4) with a multiconductor transmission line
parallel to the aperture on the plane. There exists an electric field
in the aperture region which may be designated by E; (z,x). The
aperture may then be replaced with the equivalent magnetic surface

current density given by

- m - ~
Js (x,2) = EA (x,2) x vy

where 9 is the normal unit vector into the region of interest (y > o).
For coupling to a MTL by a small aperture this magnetic current
distribution may be replaced by the two current dipoles just above
the closed aperture as shown in Figure (5). These two current

dipoles have amplitudes defined by

R s S 9
w . Js (%2 xdz (®
and

- o R - -

¢ * Juwe o (xx + z2) x Jsm (x, z) dxdz. (19)
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The derivation of Equations (9) and (10) can be found in Appendix (B).
The dipole moments Ee and Sm as introduced in Chapter II are alsc
proportional to the above weighted integrals of the equivalent surface

magnetic current [l1l]. From this proportionality, we may relate the

1 current dipole amplitudes and dipole moments for ejwc by
4 . R

‘ c, = jw P, (11)
é and
» Zm = juu ;m . (12)

The concept of polarizability (Chapter II) carn be invoked here to

g et
S Y S

P id

- -
express c_ and ch in terms of the exterior fields. Considering

4
£4 Figures (6a) and 6(b), for the case of coupling to quasi-TEM (Transverse

.-

-~

Electromagnetic) waves, only the y component of E and the x component

VoS I

-
of H are of interest. The resultant expressions are given by

e

| — -~ R SC' SC+ -

{ a T ‘m* = 'J“uam,xx(ax -H T s (13
L S Sc+
b - ~ . [odd - c ~
3 Ce T CoyY juea, (Ey Ey Yy . (14)

SR

—n

; Having introduced the preliminary notation, it is possible now to

obtain equivalent sources for a MIL behind an aperture-perforatad

screen. Figure (5) may be redrawn for a different perspective as

shown in Figure (7). Using the concept of traveling waves introduced
in Appendices (D) and (E), the distribution of the electric and magnectic
- .th , .

fields for the i~ mode on the MTL traveling in (+z) direccion are

—
E

i(x,y,Z) =a e-'l“siz Ez(x.y) (13

s

Prad - -j3yz ‘e
di(x,y,z) a e hi(x,y). (19)
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where ;I (x,y) and'EICx,y) are the power normalized modal fields

over the cross section of the MTL. As depicted in Figure (7), it will
be assumed that there are two infinitesimally spaced planes, denoted
by (R) and (L), at each side of the aperture junction. The equivalent

source model of MTL coupling will be established between these planes.

According to Appendix (F), the pair Cox and Cey excite the ith
mode traveling in (+z) direction as

a . 6 = i {fe_h (xO,O) -c

si” 7 Cmxxi (x5, 0] (17)

eyeyi
whera a; is the source of a traveling mode in (+z) direction. The
quantity hxi(xO,O) is the (x) component of the ith modal magnetic-field
distribution evaluated at the point (x = xo) and (v = 0). Similarly
eyi(xO,O) is the y-component of the normalized electric modal field.

A traveling wave source propagating in the (-z) direction, due to the

pair is

1 : ' ,
boy = = Flep b (x5,0) + Ceyeyi(XO’o)]‘ (18)
Figure (8) shows ag, and bsi sources which are convenient for analvsis

using scattering coefficients. Using the Dirac notation of Appendix

(C), one may define the vector |as> and ibs> as

. 0
]

i ..;_,___-
") .

z

|
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Figure (8). Traveling wave sources in (+z)
and (-z) direction for each mode [12].
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Define two new vectors iaR> and |b > as

{3R> = }aL> + |as> (20a)

b > = [bp> + [b_> ' (20b)
where laR> is the total traveling wave coming out of R (right hand
reference plane) which is sum of !as> and the wave vector incoming to
L (left hand reference plane). The planes R and L are shown in Figure
(8). Similarly lbL> is the total traveling wave coming out of L which
is sum of [bs> and the wave vector incoming to the R.

The equivalent circuit in terms of voltages and currents can be
obtained by matrix algebra. Consider the model of voltage and current

sources shown in Figure (9). The Kirchhoff laws require that
1vR> = va> + }vs> (21a)
]1R> = ]IL> + |1s> (21b)

Use equation (E3) from Appendix (E) to convert the scattering repres-

entation to a voltage wave representation
v = e = Tap) + 1, Coge = [op2)

where gv is a matrix whose columns are voltage eigenvectors. Substi-

cuting from (20a) and (20b), the above equation can be written as
= - I 2
|Vs> gv(las> Ebs>) (22)

Invoking equations (17) and (18), one can write the components of

!
([as> - [bs>) as

(asi - bsi) = cmxhxi(xO’o)
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This equation (22) can be written as

TSP | TEDVPEY-_1V- WO N .

"j thl(xO’oT

—_——r

Ve M . (23)

|
P

Similarly using equation (E4), (17), and (18), one can write the

o
_é equation for [Is> as :
! [ 2520020 ] }é
lIs> * Cey 4y ‘ 24 ii
'}? eyN(xo,O)-l :
4
5; For definitions and derivations of gI and EV whose columns are current i
‘i‘ and voltage eigenvectors, respectively,refer to Appendix (D). Note
] j that in the abovebderivations, the energy stored in the aperture
-; junction was neglected, therefore the Figures (8) and (9) represent
the zeroth~order approximation.
The firsc-order equivalent circuit is now delivered for the small
aperture with a MTL behind it. Consider Figure (7) again with the
modification shown in Figure (10) with no incident wave coming from ]
4 right. Using equation (13) and (l4) and noting that the external
- field (or Sc ) is zero, one can write
S - g5t (25a)
Coy = luE 3 E;C+ 25b)

Decomposing electric and magnetic fields into their modal distributions,

the j-th mode for each rfield is

!
1
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sc+
ij = aLj hxj (xO,O) (26a)
sc+
Eyj a‘Lj eyj (xo,O) (26b)

where aT_j is the amplitude of the normalized electric or magnetic

field. In a similar fashion the j-th component of the amplitude of

the current dipole moments are

cmxj = Juu a hxj aLj (27a)

ceyj = —jmeae eyj aLj (27b)

If these moments are summed over all possible modes, then
N

Cpe ™ Jumag .Z hxj a‘.’.j (28a)
. j=1
N

c:ey = -jwsae jfl eyj a“Lj (28b)

According to equations (17) and (18), the following can be writtenm for

the ith mode of the wave in (+z) direction

1. .
aps = Flome Byy - oy &y1l * (apy) (29a)

b, = -3le ] (29b)

h . +c¢c e .
mx xi ey yi

Now substituting (28a) and (28b) in the above equations one obtains:

N N
1
= = +
apy = 3ljwne b, jil hxj ay* Juea, e jil e aLj] ar,
(30a)
1 N N
bLi = -E[quamhxi _Z hxj aLj - Juszag eyi =z eyj aLj] (30b)
Jsl J’l
DPefine two real, svmmetric matrices 1 and E as
(H] =-l-:uu1 h . h (31a)
ij 2 m xi xj




(31b)

L.,
2(8&.

E e e .
[]ij e “yi 7yj

Equations (30a) and (30b) can then be written in terms pf E and H as

|aR> = (IL+3iH+]E) {aL> (32a)
iby> = (=5 B+ E) [ap> (32b)
where I is an identity matrix. 1

The gignal flow graph of equations (32a) and (32b) is shown in
Figure (11) where ias> and |b > represent the zeroth-order equivalenmt

source models., One may define the transmission matrix T as

—

I=I+JH+JE (32¢) i

and the reflection matrix R as !

R=-jH+jE : (32d)

Then equations (32a) and (32b) can be written as:

ﬂb > —R T ’[—aL;{

' L

S ERER LS

Incorporating the same analysis for ib

(32¢)

R’ one obtains the complete

source free signal flow expressions as

ﬂb > KS Z fa >
j L. L (32d)
e | |2 R |Ibe)

In the next chapter, this signal flow representation and the aperture

signal flow sources are combined as the basic model of apercure

coupling to a multiconductor transmission lines. j
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CHAPTER 1V

BOUNDING VOLTAGE AND CURRENT
AT A TERMINATION OF THE
MULTICONDUCTOR TRANSMISSION LINES
In this chapter, the procedures for calculation of maximum voltage
and current at a termination of MTL over a small aperture excited by an
external electromagnetic pulse is formulated. Consider the aperture
representation to be as shown in Figure (12).

Figure (12) can be represented by the corresponding signal flow

graph in Figure (13). In Figure (13) T and R represent the trans-

mission and reflection matrices as derived in equations (32c¢) and (32d).

The quantities [as> and ]bs> are the source representations as obtained

in equations (17) and (18). The quantities I', and E are termination

-4 3

reflection matrices as computed in equatioms (E15) and (E17). Finally,

2, and ¢, are the propagation matrices whose elements are exponential

functions of (z) representing the phase or time delays as

m Diag [e73%1%, . . ., e-jBNz“}

23

e -38,2 NP (33)
£ Diag [e 2"1%3, . . ., e ¥°3],

where Bi is the phase constant for each mode. As shown in Figure (12)
the origin is taken to be the region of the aperture for computation
purposes. Thus, [aR(0)> and IbR(O)> represent the traveling waves
immediately to the right of the aperture and IaL(O)> and ibL(O)> denote
the traveling waves immediately to the left of the aperture.

One can deduce the following equations by method of signal flow

theory:

g
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Figure (12). Terminated MTL over an aperture.
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{aR(o)> - I.laL(°)> +R (bR(0)> + [as> (34a)

;bL<0)> =T {bR(0)> +R IaL(0)> + ;bs> (34b)
Also at terminations [, and 23 one can write

lag(2 > = 2. |ap(0)> (35a)

b2 ,)> = &7 IbR'(0)>, (35b)

IbL(-Zj)> =8 |bL(O)> (36a)

e (> = o a @5, (36b)
and

[bg(2,)> =T, |ap(2,)> (37a)

1aL(-z3)> =T, ]b&(—g3)> . (37b)

Substituting equations (35) and (36) in (37), one can conclude that
IbR(0)> =30, % IaR(O)> (38a)
l =
la, (0)> =& I, & IbL(0)> (38b)

Having introduced equations (34) and (38), one can solve for iaR(0)>,
EbR(O)>’ |aL(0)>, and ]bL(O)>. For this first-order formulation,

]bL(O)> can be shown to be

-1 -1 -1 -1 _
by (0> = [(L-R& Iyd) - T [ & - (T3 I 3)lx
[Ibs> + 2(2;1 ;Zl 3;1 - 5)"1 ias>] (39a)

Similarly {aR(0)> can be obtained as
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- - sl ol -1 oyl IR

lag@@> = (1 - R 2 [, 8 - T3~ L7 & - R " (T2 I, 8]
-1 -1 ,-1 -1

x [lap> + (8,7 I," &7 - R b >]. (39b)

For almost all practical problems of interest, one can neglect R
and assume T to be unity, meaning that there are negligible reflectionms
on the MTL due to the aperture. In fact, Kajfez [12] has shown that
the reflected amplitudes are approximately one percent (or less) of
the amplitudes of the incident modes. Therefore substituting R = 0

and T = I into equations (39a) and (39b), one obtains the following

equations:
(b (0> = (L= 8, T, 8, 8 Iy o7 b> + 20 I 2 a2l (4,
lag(@)> = (L -8 [, 8 & L, ¢JMa>+2 I8 [b>1  40b)

The above two equations are the zeroth-order formulatioum.
Having derived |bL(0)> and !aR(O)> , one can use equatiouns (36a)
and (36b) to solve for ]bR(0)> and laL(O)> as
1 _.-1

r 1

1 ar- '.- —l -
PO = U I % - 4 Iy 1 e gy Iy 3y o] (Ghe)

. -1 -1 -1 -1 '
R T N R TR R

Figure (14) represents the zeroth-order signal flow graph for the

terminated MTL over an aperture.
Having formulated simple expressions for !aR(O)> and IbL(O)>, one
can calculate |a(z)> and {b(z)> at any point on the line. Specifically

for voltage at (14) termination, one obtains the following:
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V(z)> = Myllalz)> + [b(2)>]
}v(14)> = !v[la(£4)> + [b(14)>]

However, |a(14)> and lb(ih)> can be represented as follows from

Figure (14):

laqz)> = & |ap(0)> (42a)

[b2)> =L, 2 lag(0)> . (42b)
Therefore,

V> = V(0> = M [T+ I,1 8, [ap(0)>  (43a)

Substituting (40b) into (43a), one obtains

-1

V2 = M IL+ L (L - & Ty 2 8y I 8]
(la>+ 2 [y8 [b>] (43b)

Using equation (E4 ) and substituting from (43a) one can also obtain
any expression for lIa> as

: |
I, = (T()> = M (D - T 1T+, 1 M7 [v,> (44)

In order to find an upper bound for the voltage or current at a
termination, |V> and |I> should be maximized in some mathematical
sense. The best mathematical procedure for bounding vectors or wa-
trices is the calculation of their norms. The norm of a vector or a
matrix is a single number which gives both a conceptual and mathemati-
can evaluation of the size of the vector (or matrix) in the same sense
that the modulus does for a complex number. The norm of a vector a>

is denoted by || 'a> || and satisfies the following relations [17]:




i
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H [a> H >0 unless ia>- Q
l'gla>]|| =|8] |l |a>]] for 8 = complex scalar
IFla>+ o> || <[ la> ||+ {b>|

Hla>=fo> il > ([ {a> [ -]l [b6>]

The p-norm of a vector is defined as
1

Hla> Nl = Clag|® + lay[® + oo+ 0[PP, = 1,2, . @)

For the case of p = », this norm becomes

i ja> I, = maximum ]ail (46)
i

Similarly, the associated norm of a matrix A is denoted by Il A i

and satisfies the following relatioms:

lall»>o0 unless 4 = 0

Il 3ail=]8] || o]l for 8 = complex scalar
la+Bil<{la |l +ilB il (triangle inequality)
lasi<ffalilsll

The norm of a matrix for special values of (p) is defined as

lally =% §layl (47a)
i A |52 = /max(_eigenvalue _A;'é) (47b)
fail, = %7 j lagy1 (47¢)
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where (*) denotes complex conjugate transpose. 3efore going further,
there is another identity which will be used, not proved in this

discussion, and is given by

”Q_‘é).-l“p=”_;_+é+é2+...+AN+... L

- —— (48)
p L-llall

where ||§ || < 1.

Also, as noted from equations (45) and (46), the two-norm of a

vector is greater or equal to its corresponding infinity-norm since

] 2
VA N P AP
Thus, the two norms satisfy the inequality

x>0, 0 1=> 1, . (49)

For passive terminations, which are the cases of interest, the two-

-

norm of the termination reflection matrix [ satisfies

< 1. (50)

This is due to the fact that reflected power from a termination is
always less than or equal to incident power for physically realizable
systems.

The following mathematical derivation illustrates the proof for
existence of equation (50). If !a> is defined as a power wave vector

incident on a passive termination with reflection matrix I, then tche

power of the refiected waves |b > cannot be greater than the incident

[y :




i
1
i
|
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power :
<blb>< < ala> for physically realizable systems

or
<blb>= <ajrfrja>< < ala> (51)

Similarly, for any eigenvector Iui> of matrix L*‘_I; with eigenvalue

A 4 one obtains

% -
< uilx I'|ui> Ai < uilui>
t
But according to equation (51) 1
|
< u.fl“"f'fu
i

i>< <ui‘ui>_ ]

Therefore : i

(li) <ui|ui> < <ui[ui>

or
(A€ 1)

Particularly ]
oy

or ;
V’E:;_ €1 (52)

The above equation is the definition of the two-norm of matrix [, and
thus !

i, <1 (53)

At this stage, one can start analyzing equatiom (43b) by taking the

infinity-norm of !V4> as ¢
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-1

11V, > I =llty @+E)0[1-2 T30 8.0 6.5 [la >+ 2,150, [b >}

Using the triangle irequality for norms and other relations as intro-

duced previously, the above equation is easily shown to be

01w, > 1< gl ezl +lzg i 2l ogll 2= rpe soried” il

[ lag> i+ e ll_lirgl, el fl1e >0 ]

Invoking equations (48) and (43b), the above inequality can be

expressed as

1
119, 1S gl Ch 2, + g 1, 30 g, — TRy
Ll Jas>H H<° ! HF3 I H° ‘l I} g >H ] (54)
Using equation (33), one obtains
Ha il = ltegll =1 (55)

Substituting equations (55) and (53) into equatiom (54), one has

(”_I_Hz’l)

2

v <l

[l Tag> 1+ o> 1)
- ll2 252 2T 2 1, -
(56)

The norm in the denominator may be expanded as

s | i o N RN R
12,052 28 200, < Hle Il YLD D ¥ BV U Y
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or by substitution

I 9,252,250 201 < 1

‘f: But in order to make the righthand side of equation (56) a finite
1 ] quantity, one has to mathematically introduce the practical losses
3

assoclated with each mode travelling on the MIL as

;‘ r f
-yl -yYN

‘3 ;’;R ) l Diag[evz,-okyeyz]
o = (57)
# | ?

s ~L 1 +vNz

; 4 { DJ‘.agEe‘PY z,...,d ] )
“4

i where

' PIRETR | (58)

s

2, is a decay congstant for each mode.

Therefore by (47b)

max , ~%i%4
||£R||2' L (e )

3 (59)

-ty 2
HQL”Z' m;x e 73

Y]

where (14) and (£3) are right and left termination distances from the
aperture as depicted in Figure (12). The above equation can also be

written 4s

-(Qimin)lh
I 2gll = e
2 - (60a)

: -(_Gi )9,
| 1ol =e TR0
| T2
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Equation (56) may now be expressed as

ESN 2 [ ag> 1+ 1l o> 1)

Iv,>1 < —— oD

where
UR - +2aimin9.4
O'L = +2Gimin2.3

1f Ip is defined as the sum (cR + cL), then

Op * 2ag;, (2, +2q) = 205, Lo (60b)
thus
Tl >l < sl u_j__,m) Ul fag> 1l + 1 1og 21,1 (61)

The quantity dp may also be interpreted to include losses in the termi-
nation corresponding to non-unity bounds on the |£i>' and to include
radiation loss both back through the aperture and in coupling to higher
order modes.

It is computationally advantageous to replace || M, ||, with the two-norm

which is consistent with

v > < > - (62)

This may be seen by determining the two-norm which by equation (D27)

and (D31) is

\ v
It il = /o) 3

where the X,'s are the eigenvalues of the MIL matrix L-l which is

the




! inverse of induction matrix of the MIL. Also using the triangle in-

equality, one obtains

ag> 1l < B llegglng> 11+ 5l =cg le,> 1)

and
% I 15g> 11, S Ball-cgln > I+ % ll-c leg > 1l 1 -
;; Since
}] I cmlhx>llz- II-c,J,,x{h,RH2
§ 1-ceyl &> 11 = g le,> 1,

.1 equation (61) may be written as

ﬂ:‘ 2 max, Vi i
k- Il IV4>“m<m‘/ 1 (3 ) L melhx>”2+ I Ceyley> ”2] ;

K (64)

Finally, since the vector lV>> defines the voltage on a MIL with respect
to ground, the maximum voltage of interest, in other words the voltage

between any two lines, is bound by

1

1 |89 e < 2019, > 1 | i
4 Using the above inequality, equation (64) may be written as i
4 max, Vi ' ! !

[AV L — (=)l e_ih. > + e je.>i] i

9] § i RO lagelng> l ¢ egley> |

(65) g

which is the desired upperbound.

Substituting for Cnx and oy from equations (13) and (14), equation




(65) can be expressed as:

4w
—— 1 sc '
av < =g /max(=) [u|a : Sl th_>
l ‘max 1-e T Ay | mrbound, x I X ”2

+e o ESCT | e, > ]
ebound y y 2

(66)
Having determined a maximum bound on the terminatfion voltage, one can
calculate a maximum bound on the termination current using equation
(43a) and (43b) to simply obtain
Izl
=+ 12
Mz, > < —=| v, >, (67)

Il
vl e

max 2 - (68)
g Il

T

Invoking equations (D28) and (D32), one can calculate ”Equ in the

same way as || My H2 to obtain
+ i
Il gIIIZ t/;ax(eigenvalue of M _}_1_.[) / max( v ) (69)

Therefore equation (68) can be written as:

[av| /max(}1/,,.)
iIlmax - 2max vy (70)

max(.vilxi)




1] oz / L %)
mx o2 max( <= Jmin( £ )
Al i

Therefore by equations (66) and (71) one has a bound on both voltage
and current at a passiye termination located at some distance from the
aperture. Although the above formulations all have been based on the
fact that the termination is to the right of the aperture at a distant
(24), equations (66) and (71) provide a general frequency domain upper
bound at any point on the MTL., It should be noted that the losses due
to the aperture or termination can be taken into account by modifying
9p as previously suggested.

The next chapter transforms these results to transient domain, and

includes the important multiple reflection phenomenon.




CHAPTER V

TRANSIENT ANALYSIS

The previous discussions were based entirely on the frequency

domain analysis where each mode was treated as steady state sinusoidal

function of time. In this section the transient (time-domain) analysis
is considered together with the multiple reflection phenomenon.

A quasi-TEM analysis of the MTL is discussed in Appendix (E). It is
assumed that this quasi~TEM waveform is non~-dispersive, in other words
an arbitrary waveform is transmitted by each mode without distortion,
and the waveform at the distance (24) is a replica of the transmitted

L
waveform delayed in time by ( ;% ) where vy is the velocity of the mode.

Mathematically, this is expressed as
L, _ ‘
81(14,t) = ai(.ost-v—i ) (72) 1‘
!
The signal flow graph for the time domain is given in Figure (13)

where terminations are located at distances (la) and (13) to the right

and left of the aperture. If the 3R matrix of the previous chapter is

given by
3R a e"j814 1 (73)
then
[aR(ZA,c)> - iaR(o,t-74)> (74)
where
*4

The above formulation implies that all the modes have the same velocity
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and consequently the same phase constant. Therefore it takes T, units

of time for all modes to impinge on the termination. ©On the other hand

if the ER matrix is

8 = 5, e~1B1%4; | (76)
then

laRO‘A’t)> = |[aRi(o,:-ri)]> an
where .

T, = v_i. (78)

In this case, each mode has its own characteristic time constant (ri),
and the formulation is much more complicated. 1In the following
analysis, there are three major assumptions that should be kept in

mind: 1) The propagat.on matrices &, and &, are taken to be constant.

e —L
Mathematically, it is written as
=3By ]
ENE -
= i (79)
+j39.3
31 e

where 8 is defined as

w
[ ]
<|E

Also the variable (t) corresponding to the transit time from (-13) to

(+15) is defined as

13 + 1,
T (22

v

siadite
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2) Terminations are assumed to be passive and resistive which implies
that the elements of termination matrices 24 and £3 are real and
constant; 3) The medium permictivity (e) is taken to be that of free
space (eol so that all the modes travel with speed of light (v=c).
The above three assumptions imply the worst case conditions for the
whole system in terms of the voltage buillt up at terminations as a
consequence of having the highest possible speed for each mode
traveling on the MIL. This directly relates to minimal mode attenua=-
tion between successive multiple reflections. Also as implied in
Figure (15), the aperture transmission and reflection matrices are

assumed to be unity and zero as given by

I =1
(80)
R =0

This assumption simplifies the formulation and calculation of the pro-
blem and due to the very small effect of [ and R for problems of
interest [12], it is a good approximation to the exact solutionm.

In Chapter IV, the termination voltage was calculated as
[V, > =M [T +I,] 8 |ag(@> .

In the time domain, 2R|3R<O) > 1is replaced by a series of incident and

reflected waves constituting the multiple reflection phenomenon as
- T.r - -2
!Va"' > M [I+T, 11 las(_c 0> +L_3_._4|as(_t T, - 21>

e+ (Tt a (et mn@T)) >+ L.+




SR S

& Bk

45

£3ibs(ut+‘l’4'2‘f)>+ :‘3'2'4£3=bs(t+14-2(-21))>

\

Fooeo @I b (E+T, =0 Q2T)) >+, } (81)

The above equation can be best understood by observing Figure (16).
At time (t),]as(;)>' travels (ra) units of time to reach the right
termination. After being reflected by E&’ the wave travels (t) units
of time to reach the left termination, and again is reflected by Is.
Finally, it travels (r) units of time to impinge on the right termina¥

tion. This process continues indefinitely as

@I a e-1, -a@)) >,

Simila}ly, one can deduce that the process for [bs(t)>' takes the

form
~ y0 - -
(T Iy | by e+, -nC21)) > .
Equation (81) can now be simplified to

[V, >=M[I+T, 10 [ (T a (e-1, ~n(21)> +
n=0

[ (Tar) o e+t - 2(a+)m) > (82)
n=0

Due to the losses of the aperture, the terminations, and the MTL, the

above equation may be modified to include such losses as

18

VM I+ DI ] e ) M a (-, —n(2e)) > +
n=0
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Z e-pn(£3_?4)n£ [bs(_t+14-2(n+l)1')>l (83)
n=0

where (e-pn) takes into account the system loss for each time that a

wave travels twice the length of the MIL and passes over the aperture.
In order to simplify the computation of equation (83), one can use a
pole expansion method of the Singularity Expansion Method (SEM) [18].

This expansion may be written for simple poles of a general function
F(t) as

m
F(e) = J £, e%3% u(e) (84)
=17

where the sj's are simple poles of the transform of F(t), and f,'s are

3

residues due to each pole. Using the format of equation (84) in

equation (83), one can write

m
,as(_t- 14-n<_2-r)) > = Z !aSj (0) >esj (e- T“,"D.(ZT))u(t_T[‘_n(zT))
j=1
(85)
[b (e + 71, = 2(a+1) 1) >=-Zli by (0) s oS3 (E+ T, = 2(n+1)1)
J:

u(t +~:& -2(n+l)1)

(86)

where (sj) is the propagation constant for each external made in the
function expansion. If equations (85) and (86) are substituted in

equation (83), one obtains

m N
S si(t-t1, -n(2 -
V> ML+ D10 ] lag (@) )_OeSJ( Ty mn@n)) meny
1=- n=

~
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m M -
' Z iij ©) > Z &89 (r T, -2(n+l)..)e ey (87) 1
i=1 n=Q

where, due to the unit step functionms,

: t=-T
4
,] N = Integer [ o ] (88a)
5 |
t+r4—21
! M = Integer | T ] (88b)
! t
% for N and M non-negative. If N or M is negative, the corresponding
o series is deleted.
p In order to obtain an upper bound on the voltage at the termination,
- 1
‘ one should take the two-norm of equation (87). Using the matrix and ‘i
b vector norm properties introduced previously along with the triangle ]
! inequality, one obtains
| | i
v>‘ < 4‘,” 1+“r“~ a.(0)>” L
4 -4 s
| | 2 2 2] | 321 ] 2 !
N - -
T esJ-(At-ua'n(Zu))e-on +H be (0)>|l
[
a=0 3 o
M ]-I
|
‘ ” esj(t+14-2(n+l)r)e-onl > (89)
4 =0 J
=)

1f sj, the propagation constant, is decomposed into its real and

imaginary part as |

S

G T TN T g

: A

e N = S e i i st - —~—
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then

%‘ o3 (t-ra—n(Zr))e—on < }Z‘ oMy (.t-ta-n(ZT))e-pn
n=Q n=0

and

lf 83 (t+ T, 2(n+l)1:)e-pn < bf N (t+ T, 2(n+l)r)e-pn
n=0 n=Q

The quantities (—nj) and (_Ej) represent the decay and phase constants

respectively for each mode.
One can use the finite geometrical series to simplify the above

expressions as

E‘ Pl €=z, -n(21)) -en _ -ny(e-7, - ZNT)e-pN_

n=0
l_e'(.N"'l) (2nyt-0) -‘ 00
1-e- (24T =0) J
and
)f o~ i (e+71,=2(tl)T) -en _ -nj (e+7, =27 -2M7) -oM
n=0

r -(#1) (2nyT -0) |
|~1'e ] (91)
1

_e'(anT -0)

Equations (90) and (91) hold only when

2 >
an P

or

ant <o

cm— . &L
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For the case when (anr = 5), one may obtain

N
§ e (t-1,-02@M) =00 | iy o~N(E=T4) (92)
n=0
and
bf M4 (e+7, - 2(n+l)r)e-on = 1) e M (e+71,-21) (93)
n=0

At this stage, onme can start computing a numerical upper bound on the
voltage at the termination.
The maximum value for both e-nj(t =74 = 237) and e-nj(t.FTA'-ZT"ZMT) is
unity which occur approximately whem (N) and (M) are replaced by their
respective values given in equations (83).

In order to find an upper bound for the remaining terms in equations

(90) and (91), ome can set M equal to N and compute the values of N for

which the remaining terms are maximum. That is

; L - o= (¥1) (2047 - o)
1-e2n3T-0)

=0 (94)

After taking the derivative and solving for N denoted by N', one ob-
tains 2
an(“"3%/0)

A T I 1 (95)

The above value for N' maximizes the equation which can be verified by
showing that the second derivative is negative. Since N’ must be
greater than or equal to zero for the correct solution, one must com-

pute (95) and replace N" with
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Nmax = max {0,N"] (96)
Substituting Nmax in equations (9Q) and (91), one obtains
, 2 . - }
N J ln(—rp-ﬁ) !
7 &M (£-14-20Q271)) ~on S{explp + — | !
=0 1-_91_ J
\
( [}
-(2njr—o) |
| 1-e j
and
2
y [ L | |
T - = &\ - < e o+
z e nj(t+‘ra 2(a+l)T) e on Xp In.1
n"O l l-—bj_-
\
( ) 1
- anr) f
l-e J

for N' greater than zero and unity otherwise. For the case when

(anr = p), equations (92) and (93) are used and the results can be

shown to be

X (27D L4
'Z sl (t- ra-n(ZT))e-on < 0 (98)

a=Q 1 , »>1

The above results also hold for the summation over M.
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Equations (97a) and (97b) may be simplified notationally by defining a

new variable v as

= 2n.1 .
T J

Hence, the above-mentioned equations can be written as

}ZI e~ny (e -1, -0n(21)) ~om ¢ exp [p + —pln(p/Y):] }
am0 Y-P

(99)

rl = Py 1
‘.1 - ) ]

and similar simplified result holds for summation over M. If (p) is
zero, the system has ideally no internal loss and the upper bound of

the voltage at the termination will be maximum, Thus the worst case

condition suggests no loss. Substituting zero for (p) in equation (99),

one obtains

( %‘ N3 (=14 -0(27)) -on
'n-O
L g —1
tf e M3 (t+1y- 2(n+l)':)e"pn < (1-e") (100)
n=0

Finally, substituting equation (100) in equation (89), one obtains the

1 b d
voltage upprer bound as { ““ N - ’I . il .\ (O)>l
( t ! ! r ‘; } -1 m L [de ) o Sj Vi
”""R!o‘l[’-‘v! 1+, )
B e ¢ SR AL L

\
(101)

e e

s
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With the eimplifications of equations (53) and (63), equation (101)

becomes
| g, @> 1+ o, o ]
el <2/e0 ) 4
A -~-e )

"
i M '
o AL e

As discussed in chapter IV , the maximum voltage between any two lines
B is

27 e sz v |

e e B et £

Therefore

e

ey 1y sy ]
<o/ ] S = ao

v -
max i £ | g=1 a-e ant)

-

o

.

| One can use equation (70) to obtain an upper bound on the current as

l : l - :Av|max / 1 (lOQ i i
! max 2 max(g_)minex_) ) E

If Iasj(0)> and [bsj(0)> are replaced by their equivalent express-

ions in lhx> and Iey>, then equation (103) becomes
[l @l ol e ler> I, ! |
| max, v m | M7 ey M l
{ W inax < 4V s ("A_)j ) =201 | (105)
T ase j

In time domain, Cax and Cay CaR be axpressed as
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sc-
c = -uam’n FE [HX (t)]
and
3 sc-
Cay ™ €% 3¢ [Ey ()]
where
sc~ sc-, sS4t
B (8) = (8 )jzlfjej

m
sc- - sc- s4(t)
E, (2) = (B )jzlfj e®3

Taking derivatives from equations (107a) and (107b), and substituting

in equations (106a) and (106b) respectively, equation (105) can be

written as
m s, |l£,]
PRV g R R
1{ -2n, T m, XX X
j=l(1_e 3 ) bound

ley >

y

152> |, %2 o0 bounal ™|

for a lossless MIL.

Equations (108) and (104) suggest a computational method for upp

bound signal levels in time domain at a termination of MIL behin

aperture~perforated conducting screen.

(106a)

(106b)

(107a)

(107b)

W

L s

(108)

er

d an

In the next chapter, the resultant equations will be used to com=~

pute an ypper bound signal level for a specific problem both in

frequency and time domains.
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CHAPTER VI
COMPUTATIONS OF SIGNALS UPPER BOUNDS FOR A
PARALLEL-PLATE TWO-CONDUCTOR TRANSMISSION LINE
In this chapter, the results of previous discussions along with

Appendices are used to compute an upper bound for the voltage and the
current at a termination of a parallel-plate two-conductor transmission
line located behind a circular aperture. Hopefully, this example will
help the reader understand fully the concepts and the procedures used in

previous discussions in computations of upper bounds.

The four basic equations which fully describe upper bounds on the

voltage and the current in both time and frequency domains, as derived

in chapters IV and V, are !
o } < 4w /max(Vi)r L SC { £
ol —_— SAk b
: !max 1_e°GT i )‘i -’am{bound‘[ X il“bx> Hz
sec- |
3 E jev > 66
I | e S
lav|
I I !max = s v/ v:l Iz 7
' max(‘)“z)min(TI)
, ]
Av‘ <4 /%y e g5 1 ilnx> || +
, | max i (Ai) !Qm’boundl x 'H } ll2
- ls,lif,; i
I I Rty
®1vound ! * " ZJ!j-l,_e- njL !
TR -
(108)
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|ay|
max 1 (104)

The parameters used in this particular problem are the same as the omes
introduced in an example by Kajfez [12] which facilitate comparison of
results.

There are a few concepts that should be mentioned before proceeding
to actual computations. By transmission line theory, the induction

matrix L is related to the induction coefficient matrix K' as

where ¢ is the speed of 1light in vacuum. The matrix K" describes the
capacitance relationships of the homogeneous MIL and is evaluated for
the system filled with & vacuum. This matrix depends only on the

geometry of the system. The quantities Ai's appearing in all the above-

1 matrix, and the vi s

mentioned formulas are the eigenvalues of the L
are the corresponding modal velocities related to the eigenvalues (-Si)

of the matrix (A-wzl._g) as

where K is the same matrix as K' except that it is evaluated with the
true values of permittivity of the medium contained in the system.
The parallel-plate two-conductor transmission line is located

behind a circular aperture of diameter d = 2 cm which is positioned at




z = 0 as shown in Figure (17). The tramsmission line is terminated
by matrices gé and 53 representing passive terminations located
distances of 5m and 7m from the aperture respectively. The cross j
section of the transmission line is shown in Figure (18). There are

three layers of dielectrics separating two strip conductors of width W.

The thickness of dielectrics are denoted by hl’ hz, h3, and are assumed

to be much smaller than the width W.

The computations of both the sources and the inductfon matrix require

knowledge of the quasi-static modes on the MIL. In order to obtain the
electrostatic field, a unity potential is applied to conductor a, while

conductor b and the shield are held at zero potential. Then, the

normalized fields in three regfons are

T, =2 T, E, =0, Eiy = 23, 109
W R Ay Fa T O B TRy (109)

Similarly, a unity potential may be applied to conductor b while conduc-
tor a and the shield are held at zero potential. Then, the normalized

fields in three regions are

—
0, Epg =

— —
a a

- EBB (110)

- 1
B, = iy %y

T
[N o

Computation of the elements of the induction coefficient matrix K is 3
accomplished by integrating the electric fiux through the closed surface

S5 around the conductor a as
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(a)

- v 24

(z=0)

e
1
W
¢~

)

'3
/
N

Figure (17). Two-conductor transmission line behind an aperture.

N I '
{ (a)
h <
3 : 3 |
v
\ f (b)
' l
h £
2 b2
| [

Figure (18). Crass section of two-conductor transmission line [12].
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or ,
4 — — — m—
Qa = J € EA . ds + j € EB . ds (111b)
S S
a a
Equation (111b) can be written as
Q. =K__+K (111c)

a aa ab

where Kaa and Kab are the elements of K and depend only on the geometry

of the system. 3y equations (llle)}, (111b), and (109), the coefficient

aa 1s
4 w
=7 2
— — — —_—
Kaa =g [ w_ElA ay dx - €4 J wE3A . ay dx
x=-3 x=-3
£ £ 1
=W h_l + Ezl (112)
1 3

Similarly, the other induction coefficients are found as

()

3
Kab = Kpa = 7 ¥ ) (112)
€ £
3 2
=w|=2 + 2 (114)
%o {% hZ:]

For this particular example, the follcwing parameters are used to enable
comparison to the transient results of Kajfez [12]:
n; = 2cm

h2 = Jecm

a3 = lcm

" oy




Y

5 R,

T

W = 10cm
€y = 1.0
= 1
Ezr 1.0
€3r = 2.0

Substituting these parameters in equations (112), (113), and (114), omne

obtains

R K -] | 25 -20
K = [. aa ab | _ e

) ,‘Kba Kb , =20 25

where (eo) is the permittivity of wvacuum. If all three dielectrics are
assumed to be air ( € = 62 = e3 = eo), then the induction coefficient

matrix, denoted by K', becomes

15 -10

L -10 15

-1 s .
Thus L can be obtained as

f 15 -10 T

vl -t |
- - Mg -10 15

where o is the permeability of vacuum. The corresponding eigenvalues

of Lfl can be computed as

5
Kl )
v, = 22
2 it

Q
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The eigenvalues (- Biz) of the matrix B = (_-ng_ig_) and the correspond-

ing eigenvectors can be obtained as

2 w (2 101
85 = (=), lg,> = =

1 [ 1 ﬁ‘_l:]
2 5 e ’ 2 /7 L1

and the corresponding modal velocities are computed using the relation

c

v s
2 3
where ¢ is the speed of light in vacuum.

To determine the sources, the previous results must be extended to
compute the aperture modal function !ey) and Ihx>.
By equation (D31), the matrix b_iv which transforms a power wave to its
corresponding voltage value is obtained by computing the voltage eigen-
vectors |¢i> given by equation (D27). Substituting the particular

values of }‘i’ Vis and ]t;i> in equations (D27) and (D31) one obtains

-
I-q;al %1 6.14 2.37 !

281 %2.) | 6.14 -2.37
L .

Similarly, by equations (D29) and (D32), one can compute the matrix

M, which transforms a power wave to its corresponding curremt value as

. .

ik




v

A aandia

Al

o ———

wal Yoo 0.0814 0.2108

- |
’_wbl Yp2 0.0814 ~0.2108

By definition, the electric field of the nth mode traveling in

positive (z) direction is

E;(x,Y.Z) =a_ = e 1Bnz

. (115)

—r
where e is normalized for unit power.

By selecting a, = 1, one has
— —
E (x,7,0) = e (x,y)

The corresponding voltage vector for (an = 1) and (bn = Q) is obtained

from equation (E3) as

b
an

C'kbn

{ = i =
|Vn> |¢n>

r

If the potentials on the two conductors are selected equal to ¢an and
¢bn as shown in Figure (19), then the modal function E: of the nth mode

can be obtained as

o B e (B, n 2B (116)
®y0 = Paa Faaly T oo YF2ply T R,

Extending this result to both modes (n = 1,2), one obtains

, & .
fe,> = bl !
’ i

=g N |
[ 2V ¥ ol

*52
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Computation of the modal electric field e

(0)
(0)

Figure (19).
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which gives

 ———— e ——— e o -

' -3Q07.0
e > =
| y +118.5
1 for the problem of interest. E
\ The modal function hn (x,y) is equal to the magnetic field Hn(x,y,O) ¥
vﬁ inside the transmission line when the current on conductor (a) and (b) :
- “ }
’é are respectively selected to be wan and wbv as shown in Figure (20).
4- " 4
1! The currents are assumed to be uniformly distributed over the con-
ff ductor surfaces. An elementary computation using Ampere's law and f
d :
;| magnetic flux conservation gives the following: ]
iy % _ hy + ¢ (h, +h,)
. hp ™ = W]Eh e ) ’ (117)
N 1 72 73 :
| where Yan and ¢, are obtained from the matrix M. which transforms a %
power wave to its corresponding current value. The vector lhx>' for {
the problem of interest becomes ;
0.814 ;
]hx>> = !
_‘0.421 :1
'
] i
- The externmal short circuit fields are needed to completa the

bounding process. For an incident wave with transverse magnetic (TM)

polarization as shown in Figure (21), one has ;

sc- sc- -2k
EY = ZEO sing, Hx = no

sina (118)

i 3 The incident parameters chosen by Kajfez [12] are
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Figure (20). Compucation of the modal magnetic field hxn {12}.
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Figure (21). Transverse Magnetic (TM) golarization
incident on the aperture {1l].
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U
= 100 Wyp, ny =V €

In order to obtain a numerical value for equation (66) one must

= ° = Q
8 45 y @ 30 ’ Eo

compute the norms and absolute values for the following quantities:

2 2
” |n, > “2 = ﬂ).ala) + (0.421)° = 0.9164 A/

ey > ”2 - Jcon? + 118.5)2 = 329.1 v/

-E

sc- 0
! Hx I = To sina l = 132.6 Ayp
sc= .
| By l - , 2Egsing | = 141.4 KV/q
3
d -5
a = C 6 ) = 1.333x%x10
3 41
d -7 4
@, = ( 13 ) = 6.666 x 10
kb
Assuming (ai)min = ldB/lOOft , one obtains
=
-(ag) s (100fT)
20 loglo [e min = -1
or
=3 B
(ai)min = 3,777 x10 _i

and by equation (60b), gy becomes

oy = 90.652 % 1073

Now, one can substitute all the available data into equations (66) and

(71) to obtain
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-9
(Av|max < (w) (191.4 x10 ) Vv

-9
<
| |max < (w) (3.287 x10°) A
If the dielectric is replaced by a vacuum and the incident angle
is set (8 = 900, a = 900) for maximum short circuit fields, the upper
bounds are
-7
< .
IAVImax (w)(4.76 x 10 ') V

and

|T]_ < (706 x 107) A

ma
This forms a useful frequency-domain bound for the problem presented with
a voltage less than 10 Volts for frequencies below 3.3 MHz.

For comparison, this problem has been solved exactly for open-
circuit terminations on the MTL. For such a case

Ly=L, =1

Determining the [as> and lbs> of equations (43b) from (13), (14), (17)
and (18), the results were computed and are plotted in Fig. 22 along
with the bound. A modified bound is also plotted which represents the
actual bound of the particular problem. The difference in bounds is
4.1 which seems slightly unreasonable until the bounding approach is
examined. A factor of two arises in the bound to account for a dif-
ferential mode which does not occur in the case considered. The tri-
angle inequality used in the bound of |as> and [bs> contributes another
1.5. The product of the 2-norms of ﬂv and Iey> versus the =—norm of

(yv[ey>) contributes a 1.29 factor. A small contribution also occurs due

to some of the neglected loss terms. In light of these observations, the

resultant bound is very reasonable.
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Figure 22. Open-circuit example.




For the Transient Analysis, the external incident fields given by
equation (118) should be modified in order to take into account the

-, time variations as

3 ~2E

- E 5%(t) = 2E.F(t)sind, H “(t) = F(t)sina (119)
- y 0 X 0
& where for EMP a suitable function is
i
F(t) = oot e"Bt. (120)
&
TJ Kajfez's date [12] are
.
N 6 1 1
g a=3x 10 sec ’ !
1 B = lO8 sec-l

.

Equation (120) is in the format of equation (84) with |fj| = 1(j=1,2), '

n, = a, and n, = 8. Using equations (108) and (104) for the vacuum

1 2
filled lines with Kaifez's data, one obtains

< (1.
[Av|max (1.8959) v

||, < (0.0281) & j

ma

e b

where IHXSC-[ and IEYSC-[ in equation (108) correspond to the ex-

pressions of equation (119) without the F(t).

pgpver——




Kajfez [12] has obtained a result for cthis problem with moderately
mismatched terminations. He has obtained a maximum voltage peak of
about (0.27) volts for conductor (a) and (0.25) volts for conductor (b).
Although at first glance, it may appear that the result obtained in
this discussion (1.9 volts) is not reasonable at almost ten times that
of Kajfez, it should be noted that for upperbound computations it is in
reasonable agreement. The reason being that Kajfez has not computed
worst case conditions and thus in solving the problem he has not de-
viated from the actual parameters regarding the termination. With his
moderate mismatch, multiple reflection phenomenon have not affected
the bound due to the loss. Also, in computation of various variables,
he has used the true permittivity of the system. In this discussion,
the use of multiple reflection phenomenon has had a negligible effect on
the bound. At several stages of computation, other matrix norm in-
equalities such as

laz | < fal Izl
and

| a+3) <fjal+izl

have been used extensively. These inequalities have contributed twice
or more to the exact values, and therefore lAV]max may be reasonably as

small as

|av| < 0.95 volts
max
In the transient analysis, the velocity of all the modes have been

assumed to be the velocity of light in a vacuum which is actually larger

than the true velocities of the modes in their respective media. 1In

addition, the upperbound has had a factor of two to account for the
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possible potential difference between wires and not just to ground.

Taking all these factors into account, one can readily observe that the

(1.9) volts for a bound on the voltage is indeed in reasonable agree-

ment with Kajfez's calculations.




CHAPTER VII

UPPER SIGNAL BOUNDS FOR
ADDITIONAL CANONICAL PROBLEMS

A more complete understanding of the bounding procedures will be
presented in this chapter in connection with the upper bounds of three
additional canonical problems. These problems are two parallel thin
wires behind an aperture, parallel thin and thick wires behind an
aperture, and a wire between an aperture-perforated parallel-plate
transmission line. The latter two represent a wire at the surface of
a cable bundle and a wire between bulkheads respectively.

As in the previous chapter, we use the bounds of equations (66),
(71), (108), or (104) as appropriate. Let us first concentrate on the

voltage represented by equation (66) below:

V.
lav] € — ey [u]e| (S > ]
max 7 . e o7 Ai ™ pound % X

SC—-
re el BTSN 1 66

Equation (66) was actually obtained from an upper bound on the power
along the transmission line. The square root is the upper bound on the
transformation from power waves to voltage waves. The factor of four
accounts for the wire to wire voltage rather than just the wire to
ground voltage in addition to the total termination voltage, which can
not exceed twice the incident voltage wave. The quantity (l'-EGT)

accounts for the total multiple reflections with I representing the

loss per round-trip transit. The remaining terms represent the

traveling wave sources due to the aperture. The w results from a time-




1y ]

derivative in the aperture current dipole moment representation, with

a and a, the required components of the dyadic aperture polarizabilit-
ies. The]l%(> and ]ey3> vectors are associated with the multiconduct-
or transmission line (MTL) fields at the aperture as required for the
source determination using the reciprocity theorem.

For a particular problem as shown in Figure 12 of Chapter IV the
radian frequency w is assumed known and the loss Op must be estimated.
This loss is due to power absorbed in the terminations, or line, and
radiated in other neglected modes or back through the aperture. For

simplicity, we shall set ¢., equal to only the line loss which will be

T
estimated at 1dB/100ft., typical of standard transmission lines in the
high frequency (HF) range. i

In order to facilitate the field calculations associated with the
sources, the medium is assumed to be homogeneous. In general, we shall
use the parameters of a vacuum, By and €, which provide a maximum
value of vy to be 3 x 108 m/s. The bounds on the polarizabilities are
obtained from the geometry of the aperture. In general, these bounds
may be determined from the polarizabilities of an ellipse which cir-
cumscribes the aperture. The Hx?c_ and Ey?c-' are obtained from the
exterior problem which is assumed to have been solved.

The remaining quantities Ai,]hx >, andley > are determined from

the geometry of the MTL. The equations defining the MTL are given in

Appendix D as

d
% | v> = -juL|1I> (D1)
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and

Edz‘ | 1> = -juk| V> (D2)

The parameters Ai are the eigenvalues of L_l. If the medium is a

vacuum as assumed, these are simply the eigenvalues of c?& where ¢ is
the speed of light 3 x lO8 m/s. The induction coefficient matrix K
may be determined by either solving n boundary value problems using
Laplace's equation for the n wires or determining the potentials due
to charge distributions on the wires. The latter has been used where
a line charge Qi has been assumed and the associated potentials been
determined. These results are used to determine the matrix X from the

vector equation
lv>=p|Q> (12)

with the elements of IV > and ‘Q > associated with the corresponding
wires. The matrix K is the inverse of P from which the Ai may be found.
In determining P, the electric field in the medium is required

which is also used to explicitly determine Ey at the aperture for each

Q..

1 The corresponding magnetic field component Hx may simply be
obtained as (-Ey/no), where N is the characteristic impedance of a
vacuum given by 1207.

To complete the problem, modes on the MTIL must be defined. 1In

general, the modes are associated with the eigenfunctions of (-wzggg.

However, in a homogeneous medium Lﬁl = c2§ and we need the eigen-
2

vectors of (- 27 I) where I is the identity matrix. In this case, we
c

are free to choose the eigenvectors. It is standard to choose one of

the voltage eigenvectors for an n-wire line as
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1
b, > = 2| 1 |, (122)
Bl

which corresponds to the bulk mode, and the other nodes l bi > as ortho-
normal differential nodes. The corresponding charge distributions

| Qi > are given by

|Qi>=5|bi> (123)

which results in aperture field Eyi for each l Qi> . The components of

| ey > and | hx> are normalized for unit power flow. Thus

V2 E .
¥i (124)

e . =
yi /c<bil_l$lbi >

to give
eyl
| e, > = : (125)
o |
and
lhx>=——1—|e >, (126)
n0

With these vectors and equation (66), we are prepared to determine an
upper bound on the frequency domain voltage and current.

Alternately, the l bi> may be chosen as the unit normalized eigen-

vectors of Q-l, then (123) becomes

M
2
[od

b, > . (127)

la,> = .
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The denominator of (124) similarly becomes vAi/v . Since Eyi is pro-

——— e —

s
portional to —%, (124) can be simplified to
c

‘/?E' /x.
_ ¥i i
¢vi T T ¢ vV < (128)

where the prime denotes the electric field due to a charge vector] bi>n

w
Al s

P

The first problem to consider in this chapter coasists of two 1

parallel thin wires in a vacuum as shown in Figure 23, A particular

frequency is not chosen, but rather the answer is given as proportional
to w. Using the suggested 1dB/100ft estimate for the loss along with

lengths 24 and 23 of 5 and 7 meters respectively, (1 -te-'cT)—l becomes

it

(11.539). These are the same lengths as the example of Chapter VI.
Also assuming the same circular aperture, a and a, are given by
(1.333 x10%) and (6.666 x1077) respectivel;.

' To determine the eigenvalues and field vectors, we consider the
approximate line charge equivalent configuration of Figure 24. To :
compute the P of Equation (121), we may sequentially allow only
charge Ql and charge Q2 to be nonzero. From each of these line charges,
the electric fields may be determined. We obtain the corresponding

A voltages by integrating the electric field from the ground plane to the

- wire edges (dotted line about line charge) along both paths Ll and L2' ;

From the latter, the matrix elements of P are given for thin wires as
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4 Figure 24. Image charge equivalent of two wires above ]
a ground plane.
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d-r, -
- _ 1 _ 1
Pla = Fpp = [Zneo(x-d) Zne_Gerd) | 9%
o -
1 2d—ro
= ome In( - ) (129)
o )
and d-r, )
P1a =Py = - e
A 2ws°[(x—d) +4a" ] Zweo[(x+d) +43" ]
. (2d-r ) +4a°
m 1n 2 5 . (130)
o) r =+ 4a
0
Thus
2 P -P
P _ | u 12 (131
(Pyp” =P12) | Py Ppy
where c¢ 1is the speed of light (3 x108 m/s).
It is easily shown that the eigenvalues of L—l are given by
A, = 2/ (B FR) (132)
i 11 12
with the associated eigenvectors given by
b, > == | 1. (133)
V2 |71

If the charges on the two wires are designated as Ql and QZ’ then

it is easily shown that the electric field at an aperture symmetrically

located between the wires is given by

[ et —————

pve—werye———
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= _ =4y
neo(d +a”)

Choosing | bl> to have the plus sign we have

_ =dY2”
Ey2 e (d2+a2)
[o}
and
Eyl =0
to give B 7]
-2 d Ny /_}l
2. 2 c
le.> = | T@HaD) (135a)
0
22d . / _)l
|h > = | TdHaD) c (135b)
0 ]

We note that A, is the minimum eigenvalue required in Equation (66).

1

Substituting this information into (66) we obtain

2d "

2,2

o [2]n 857 |
m(d“+a")

-5
| AvlInax < (3.077 x10 7)uwe oBy
+ IEYSC- [1. (136)

If a=d = lcm, this becomes

-4 - sc-
lav] . <9.79x10 ko[zlnonxsc |+[Ey [

where k_ is the wave number w/u e . Using the Hxsc— and Eysc- of (118)

with the associated data, this bound is
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|av| < 33 k v
max Q

or equivalently

lAv]max < w(1.11 x107%) v . (137)

This is approximately five times the level of the parallel plate
problem of Chapter VI with a 2 cm spacing.

To obtain the time-domain upper bound for the vacuum filled line
we note that the factor w/(ll-e—oT) of equation (66) must simply be

replaced by

mn |s,||f.]
I —os
j=l 1-e “"]

to obtain equation (108). In (108), the loss has been neglected in
comparison to the decay of the short circuit fields as specified by nj
for each mode. Using the data of Kajfez in equation (120), the time

domain bound becomes
|Av|max < 10.98V. (138)

The second problem of interest is shown in Figure 25 with wire 2
close to wire 1 and much smaller with both radii much less than d. This
problem models a wire at the surface of a wire bundle with an aperture
centered below. If one assumes that the only change from the previous
problem is in the cross-sectional geometry, only the new Ai,
|ey>, and | hx> are needed for equation (66) to be used. Fundamental
to these quantities is the determination of P in (121).

To determine P , a charge set of Q1 = 0 and Q2 =1 is first con-

sidered. Due to the proximity of the wires, the model of Figure 26 is
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Figure 25.

Figure 26.
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required with the center charges representing the cylindrical images of
QZ in wire 1 and the left charges balancing the center charges to give

Ql = 0. Computing the resulting voltages Vl and V2 between the wires

and the ground plane, the corresponding forms of P12 and P22 are
obtained as
r 2d -r r2 +r'2
1 1 1 1
P12 = %ne a In r + 2 1 2 12
o 1 (2d—rl) +r

(2d ~1,)2 +422
1 1
+ A in
TEe 2 2
o r. +4a
1
and .
r (2d -r )2+4a2 ] r 2+(2:=;.-r')2
P 1 In 2 + In 2
22 Bmega r, +4a’ J (2d-r,) %+ (2a-r")?
2d-r
+ 2me In r 2
) | "2
where Ty and T, are the radii of wires 1 and 2 and r' = r12/2a is the

location of the image charge.

For P21 and P22, no image is needed in wire 1 and the line charges

are simply Ql 1 and Q2 = 0 to give

0 ] 1 L 2d - rl
11 " 2re "0 | T ¢
o 1
-
and . (2a-1,)% +4a
P = In
21~ Gme_ 2 a2




Dimensions are chosen similar to the previous problem as d = lcm,

r, = 0.5cm, r, = O.1lcm, and a = 0.35¢m. The image position r' is given

1 2

by 0.3571lcm. The resulting matrices P and Efl are given by

L |1-0986 0.7821

= 2me, 13,0521 3.3940
and -
-1z 1.1680 -0.2692

- Yo 1-0.3621 0.3781

The required eigenvalues and eigenvectors of Lfl are given by

1.6939 _ 8.0205
M= T Mty
uO 1JO
and - -
0.2870 -0.9275
b, > = » by >
0.9579 0.3738

where |bl>' represents the bulk mode.
The aperture is located half way between the centers of the wires
as shown in Figure 25. The aperture electric field for each mode is

needed for |ey> and lhx>. For mode 1, the charge vector is

-1 0.0773"
lq> =p [b1> = 2me

°©!0.2583

To compute Ey at the aperture, Q2 must be modeled by three charges above

and P,,. With this

the ground plane as was done in the evaluation of P12 22

in mind the general formula for Ey is




r,Q .

1°2 d ‘

E_ =-— |(Q, +Q, + ) ‘
o 1 2 2a a2+d2

1 d

-Q, 5=
2 2a [d2+(a-r12/2a)2]

E,. = -55.78 V,

71

Similarly for mode 2,

- A

PR g " .
IS AN .

-1.1839"

[Q> = 2me
0.4772

Ey, = 133.35 V.

y2

K]
L i o a

From equation (128), |ey> becomes with the (/\i/cz) scale

| -1176.8"
’ Ie > =
‘ y 1292.9

Substituting into (66), the upper bound becomes

|av] < 0.8025 weo[zlnoaxs°'| + lEysc'l].

For the incident form of Kajfez, this bound is

6

|av| < w(2.41x10 ) V.
max

In the time domain this bound becomes
[av] < 23.84 V.
max

The substantial increase in these bounds compared to the parallel plate
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problem is seen as a primary result of the five-fold increase in the
L2 norm of |ey>>. This is a consequence of the closeness of the wires
and aperture and the stronger interactiom.

The last problem is depicted in Figure 27. The wire has been
placed at the center of the structure and has a radius equal to b/100.
The wire is labeled as conductor 1 with the upper plane as conductor

2. IfQ, =0 and Q, = 1, the wire may be neglected in computing P
1 2 12

and P22 to obtain

Pyp =

The computation of P1l and P21 is more complicated since the images of

the wire in the surfaces must be included. The values Pll and P21 may

be obtained by subtracting -% times P12 or P22 from the potentials for

a wire between two grounded planes. This removes the effect of charge
on conductor 2. For the grounded planes case with the wire charge
equal to 1 C/m, the potential between planes is zero and the wire
potential is obtained from an infinite sum including the images. If only
the lower image is used, the wire potential is approximated by
(&.595/2we°). The additional images have a minor contribution changing
this value to (4.0466/2ﬁeo). Combining these results for the geometry
given with L = 10b, one obtains

0.6854 0.05

B=
To 0.05 0.1
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|
i and
Sl 1.5142  ~0.757 ;
- Mo | -0.757 10.378

| The corresponding eigenvalues and eigenvectors are

1 A, = N A, =
* 1 Ho 2 Yo
. |
i and
-
H 0.9963 -.0845
e by > = s Iby> = .
|
EJ

The aperture is located directly below the wire for maximum

L e el

coupling and d is set equal to lecm. The image summation for Ey can be

-

computed exactly for this problem to give the electric field at the

aperture as

*
[EPRITPICRIRE:  . VSIR )

)
E = Q —-l— - —l— - ..(.2_2_. . z
f v 1| 2Le 4de Le .
; o [o] fe) ) i
Using the [bi3> as charge distributions, the primed fields of (128) are

obtained as

- E' = -22.84/¢
0

[ O

;| and
EYZ = -3.08/5o

which give an |ey> of

~755.2 ﬂ
leg> =1 L2733 | - :




A

Since [ey>, |hx >, and A

4 are the only parts of (66) to be

modified from the last problem, the upper bound is obtained as

lav] < w(1.197 x107%) v
max
with an equivalent time domain bound of
|av] < 11.84 V.
max

The primary observation of interest which seems to link these three
problems is that for similar dimensional relationships, the bound takes

on the same order of magnitude. This would suggest the applicability

of canonical problems as bounds for more complex problems.
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CHAPTER VIII
CONCLUSTIONS

This report developed a computational technique for upper bounds
on signal levels at terminations of multiconductor transmission lines
(MTL) located behind an aperture-perforated conducting screen. This
was accomplished in several stages. First, the electromagnetic coupling
through small aperture was described using the concept of aperture
polarizabilities. The idea of coupling was then extended to the MIL
2xcitation behind an aperture where the aperture was represented by the
equivalent current dipole moments. A source of traveling waves was
introduced to replace the aperture and the aperture coupled energy.
These traveling waves transferred the energy from the aperture regiom
to the terminations. The amount of transferred energy in terms of the
traveling waves was found by introducing a signal flow graph of the
whole system. It was assumed that the aperture had no other signifi-
cant interactions with the MIL as might be described by additional
reflections in the aperture region.

Having computed the amount of energy at the terminations, a trans-
formation was used to represent the traveling waves in rerms of the
voltages and currents. The mathematical properties of vector norms and
their associated matrix norms were discussed. Tue idea of two-norm was
used to formulate upper bounds on the voltagec and currents at the
terminations. At this stage, it was assumed that the terminals were
passive and the losses associated with each mode traveling on the MIL

were of exponential form. Although the radiation and termination losses

39
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were not explicitly taken into account, it was mentioned that these
losses, if non-negligible, could be considered by modifying the term

due to propagation loss. Purther, after some mathematical manipulations,
it was found that the bounds depend primarily on the source and termi-
nation local geometries. Finally, considering the fact that the

maximum veltage between any two lines might be the sum of the indivi-
dual voltages to ground, an additional factor of two was incorporated in
the upper bound. The upper bound on the termination voltages was formu-
lated in the frequency domain. An upperbound on the currents in
frequency domain was simply obtained from this voltage bound.

This idea was extended to the time domain where it was assumed that
the waveforms launched from the sources were non-dispersive (quasi-TEM),
thus reaching the terminations without any distortion. Several
assumptions were made regarding the medium, the termination, and the
modal propagation. It was assumed that the elements of the termination
are all real and constant and the propagation constant of all the modes
are equal to that in a vacuum. The multiple reflection phenomenon was
taken into account and its formulation was simplified by using the pole
expansion of the incident field characterized 'in the Singularity
Expansion Method (SEM). Using vector and matrix norms, an upper bound
for the voltage and the current was formulated. It was observed that
the upperbounds basically depend on the geometry of the system, the
properties of the external time-varying fields, and the shape of the

aperture.

Having formulated the upperbounds on the signal levels in both time
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and frequency domain, a comprehensive example was presented in order
to elaborate the use of the technique. The parameters and the geometry
were chosen exactly the same as a problem introduced by Kajfez [12] in
order to facilitate the comparison of results. It was found that the
maximum voltage in Kajfez's example for a moderate mismatched termina-
tion was found by a multiplicative factor of approximately ten. It was
noted that for upperbound calculations under the worst possible con-
ditions a factor of ten was in reasonable agreement with his results.
The reason being that at several stages of computation various types of
inequalities were used that doubled the exact value. Also, the velocity
of all the modes were assumed to be the velocity of light in a vacuum
which were greater than the actual velocity of the modes in their res-
pective media, contributing to the increase of the voltage at the
termination. In addition, a factor of two was used to account for the
potential difference between any two wires and not just to ground. In
the whole, it was observed that final results obtained by using the
developed techniques were in good and reasonable agreement with Kajfez's
results.

Several other problems were also approached directly by the techniques
developed. Two bundles of wires over a ground plane were bound above
by modeling them as two wires over a ground plane. A wire at the surface
of a bundle of wires was modeled by separate thick and thin wires over a
ground plane. A last example considered a wire between parallel plates.

The problems all had comparable dimensions but interestingly had similar

voltage bounds,

il
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There are several suggestions for future research. It would be
desirable to find signal levels on wires behind composite panels
which ~ouple the external field by a diffusion mechanism. Also of
some importance is the problem of wires passing through an aperture
corresponding to antennas or aircraft control cables. Anocher area
of research would be large aperture problems such as conformed

antennas or large windows.
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Appendix (A)

POLARIZABILITY OF SMALL APERTURES

The diffracted field in the vicinity of an aperture depends on the
excitation field and upon the shape and size of the aperture. The
moments of the equivalent dipoles are related to the compoments of the
known exciting field through special constants of proportionality
called the aperture electric and magnetic polarizabilities.

Due to the importance of the use of dipole moments, a great deal
of attention has been devoted to determination of the polarizabilities.
Cohn in [Al] and [A2] has experimentally determined the constants for
several shapes, while Van Bladel [A3], has computed by numerical
methods the polarizabilities for a rectanéle, diamond, cross, and a
rounded-off rectangle. Table (Al) gives the electric and magnetic
polarizabilities for a circle of radius (R), an ellipse of eccentricity
(¢), and a narrow ellipse. The following remarks should be made

concerning the table:

~na an
= q XX + a_
o, XX m,yy vy

2) ¢ = /1 - (We)?

3) K and E are the complete elliptic integrals of the first and

1)

sl

second kind, as in [AS].
By the study of the data given by De Meulenaere [A3], when an in-
accuracy in the polarizabilities of 10X can be tolerated, one can

3/

-
use a normalization factor of [ (aperture area) <], and use elliptic

polarizabilities in order to calculate the polarizabilities of the

- e s
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rectangle and rounded-off rectangle.
The polarizabilities of other shapes may be obtained by either

measurement or numerical solution of the quasi-static aperture problem.
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Appendix (B)
APERTURE REPRESENTATION BY A PAIR
OF CURRENT DIPOLES

Consider Figure (Bl) where an aperture-perforated screenm is

shown [Bl]. In order to evaluate the scattered field in the interior
region, one only needs to know about the tangential electric field

Et over the aperture. It is convenient to close the aperture with a

metalic 1id and place a magnetic surface current demsity jsm over it
given by

- m - ->

Js = Et X (B1)

where n is the normal vector as shown in Figure (B2). The vector Et is

the total aperture field typically obtained by solution of a quasi-

static integral equatiom [B2].

Now, one can invoke the reciprocity theorem to compute the

b

!
_4 scattered field at any point in the interior region due to surface
magnetic current. For the purpose of this discussion, the reciprocity

theorem as introduced in [B3] will be used. As shown in Figure (33), b

Q the scattered field f(r') at a point (') is to be computed with
1 respect to the origin which is taken at the center of the closed i
H aperture region. By introducing a unit magnitude electric dipole P i
r at the point (?') {B1}, as shown in Figure (B3), one can write the i
n

reciprocity theorem as
F E(e"). Zp = | G, E -7, . &) a (82)

v

where P is an electric current dipole given by

3 Faas(-1h (33)
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-
and a is a unit wvector characterizing the orientation of the testing

dipole ?. The vectors E. and §£ are the fields produced by the source

b
?, evaluated at the surface of the closed aperture, and je and jm are
volume electric and magnetic current densities which are the sources

of the field scattered by the aperture. In the case of this discussionm,

je is equal to zero and equation (B2) for the surface current 35

Er') . '51, - | - (35“‘ ) 'ﬁb) ds. (B4)
S

From Maxwell's equations, one can write

vl = jue E (BS)

xﬂb jw b

The vector Hb can be expanded in Taylor's series as

> - +* - - -

Hb(r) = Hb(o) +r . (VH) S+ .- (B6)
where the higher order terms are assumed to be negligible. One can

-> -

write ¢ . (Vﬂ)la as

T (V)= = ()= . T - rx (vx)|-. (87)

o ) )

The term (VH)IS . T gives rise to a quadrupolewhich 1is neglected [B2].
Substituting equation (BS) in equation (B7), one may rewrite equation
(B6) as

> e > e - . - -

Hb(r) = Hb(o) -1t x [jue Eb(O)]. (38)
If equation (B8) is substituted in equation (B4), one obtaias

E(x") - 3, = J-[ﬁb@)- jwer X Eb(a)l . Esmds

5 (B9)

-

-
One may define Ce and Cm as electric and magnetic dipole current

moments respectively bHv

m
becomes
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(B10)

E-J 30 as . (B11)

With these definitions, equation (B9) can be written as

eI L,=-5® .C -E® .¢ (B12)

By comparison of equations (B2) and (B12), one may write equivalent

currents as

Jo=sn 35 =T s (B13)
- -+ § - -
Je = §(y) Je = Ceé(r) (B14)

where §(r) is the three dimensional Dirac delta distribution. The
equivalent dipole current moment representation of an aperture is

shown in Figure (B4).

S g e - o il X

e ———— s




- e

o — e e

Y]

" 3
SONPRURITOAY . A S S S

100

A

Figure (B4). 3: replaced by a pair of current dipoles.
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Appendix (C)

DIRAC'S NOTATION OF MATRICES

The following material is an introduction to matrix algebra using
Dirac's Notation which was introduced in Quantum theory by P.A.M. Dirac.
The presented material is a summary of B. Friedman [Cl], S. Gasiorowicz
[C2], and A. Messiah [C3].

In Dirac's Notation, an N-dimensional colummn vector is denoted by

x> =

When matrix A, an Nx N matrix operates on vector }x> ,» the resulting
operation is another column vector |V> . By elementary properties of

matrix multiplication, the kth element of the vector |V>is computed as

»

v = ) X (C1)
e T st

~ 3

The complex conjugate transpose of a column vector |x> is a row
vector denoted by < x| whose elements are the complex conjugate

elements of !x> ordered as

<x| = (x*

1 xz...xN) (c2)

where (*) means complex conjugate.

101

Pt ver s ——

e T g i




A

g
——— e TR s

P o .
. o
4
(SIS VA NN

i o

b b i

102 i
The () notation is used for complex conjugate transpose of A 4

given by

Using matrix properties for conjugation and multiplication the

following product is.obtained:

I

< M| =aB{x>)" =<x|BfA" (c3)
1
where <M | is a Nx1 row vector and Ef and éf are both NxN matrices. i

One of the most important types of matrices is the Hermitian

matrix which is equal to its own complex conjugate transpose, i.e.,
AT = o4
A Hermitian matrix has the following properties:

1) Instead of (NZ) distinct elements, it only has N(N+l) distinct

elements.

2) The elements on the main diagonal are real.

3) The elements which are located symmetrically across the main
diagonal are complex conjugate of each other.

Multipiication of a row vector with a compatible column vector

results in a complex number as
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<xly> = (xf xz* ces xN*) Yo | ® jzlxj* yj (cs)

y
LN

It may be observed that < x|y > =<y|x >* . £ <V | = < xlﬁ*, then
< V|y > = < x|a"|y>, and the result of such an operation is scalar.
Sometimes it may happen that the order of multiplication in (C4) is

interchanged, then the result is a NxN square matrix

-Y‘l-
* ok * *
ly>< x| = Yy (Gey Xy Ky ...y ). (cs)
N
- -

One of the benefits of representing matrices in Dirac's Notation is
that by observing the position of symbols, one can readily determine the
format of the resulting operation. For example, assuming that 8 1is a
scalar, [x > and |y > are vectors, and A is a square matrix, then

< x|Aly > and 8 < y|x > are scalars, Alx > is a vector, and (x >< y|

is a square matrix.
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Appendix (D)

MULTICONDUCTOR-LINE FORMULATION

The computation of voltages and currents on a multiconductor
transmission line (MTL) in terms of eigenvectors have been analyzed by
Amemiya [D1l] and Marx [D2]. This approach has been used for both
transient and steady-state waveforms. D. Kajfez [D3] has extended the
eigenvector treatment by using a simultaneous diagonalization of two
matrices. This section presents the main ideas of method of diagonal-
ization by using only one composite matrix instead of two separate
matrices.

Consider the N-conductor transmission line with a conducting
ground plane as shown in Figure (D1). The reference direction has

been chosen such that real, positive values of V, and Ii represent

i

power flow in the positive z directiom.
References [D1l], [D2], and {D4] derive the following two formulas

for a lossless MIL in sinusoidal steady-state analysis with isotropic,

nonmagnetic dielectrics:

d
£ V> = ~gui| 1> (L)
d

iz 1> = -juK| V> (D2)

The matrix L is called the induction matrix and the matrix K is the

induction coefficient matrix.

There are two types of propagation on these lines. If the

A coita
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dielectric is homogeneous, transverse electromagnetic (TEM) modes
propagate. If the dielectric is inhomogeneous, hybrid electromagnetic
(HEM) modes propagate [D5]. In HEM mode both the electric and magmetic
vectors have a longitudinal component. At low frequencies, the longi-
tudinal component is small and may be neglected, giving rise to quasi-
TEM modes.
Using the analysis presented by Friedman [D6)], the first step is-

to decouple equations (D1) and (D2) by taking derivatives of both sides

and substituting in the same equations to obtain

a2 2

—5 [v>= «wLK|Vv> (D3)
dz .

42 2 :

=5 l1>= -KL|1>. (D4)
dz

As L and K represent stored energy of a passive nefwork, they are both
positive definite and thus qualify for the method of Friedman [D6].
This method of solution for |V> and | I> consists first of obtaining a
set of orthonormal eigenvectors I ci> and corresponding eigenvalues

(- Biz) for the matrix B = -mz}__lg . Since L and K are positive definité,
LK 1is also positive definite and the Biz's are all positive. The

eigenvalue problem is given by

2 2
-~ _gg_l;i>=- -8 |‘1>' (D5)

The eigenvalues may be obtained from

dec[-w’LK +8 211 = 0 (06)




1Y W

<gyley> =8y, ®7)

and Gij is the Kroneker delta.

One may now form a square matrix G whose columns are the lci>
E- [ ’Cl>’ IC2>’--Q’ [CN>] (Ds)

This matrix may be used to diagonalize B as

2

= + - - 2 -
A G BG=Diag(-8.,..., =8] (D9)
where
EET =1, (D10)

The matrix G is an orthogonal real matrix, (t) denotes the transpose of
the matrix, and I is the identity matrix.

The corresponding eigenvalue problem of the decomposed matrix A

becomes
42 ‘
—7[Y>=A[Y> (D11)
dz
where
x> =¢"|v> (D12)

Because of the fact that A is real and diagomal, equation (D1ll) can be

decomposed into a second order differential equation for each mode as

sy, =80y, (013)

The solution is of the exponential form

. N P TDr e A e Ry PR ¥ T
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v - y: e~ 1842 + yi— e 1812 (D14)

where Bi = ;:-’— » and v, is the velocity of the ith mode. This velocity
i

relation can be shown by the usual method of multiplying (D14) with

+ue and then taking the real part in order to obtain the rate of ‘

e

change of the phase. In equation (D14), y; and y{ refer to the

amplitudes of positive and negétive travelling waves in the z direction.

|Y > can now be written as (D15)

N
[Y>= 7§ yi|u1> (D15)
i=1

where |ui> denotes a column vector having all zero elements except for

the ith element which is unity.

Equation (D12) can now be used to find |V> as

N
lv> = izlyiici> (D16)

Similarly, |I> can be obtained from equations (D1) and (D16) as

N dy
-1 Ji -1 5
|I>’i§l(j—m) (g7)L lCi> (D17)

The above equation can also be written as

N
v, Bi + -jB4z
1> - Zlc—w ) Iy, e

v, e+jsiz]l._-l§ >
i=

i i (D18)

Spa

From these expressions for voltage and current, the total power

carried on a MTL is the average real power defined by
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P =i Re <V|]I> (D19)

Substituting equations (D18) and (D16) into (D19), P becomes

fr N Bi * -1
= — !
P !!Re{i,zjalcm ) vy yj< gL |;3>} ' (p20)

where (*) denotes the complex conjugate. If yi‘ is equal to zero then

the power travelling in positive z direction is

N 8
+ . °3 *+ + -1
P’ =35 Re {i'zj_l( =)y vy <L ch>} (D21)

It i3 useful to relate the positive traveling power (P+) to a

power wave (ai) such that

N
) !ailz (D22)
i=1

assuming that the travelling modes are orthogonal. In this case, a, is

given by
+
! /< I, |z, > (D23)
a, = Z g D
i /—VI F LS R §
where the Ai's are the eigenvalues of the matrix Lfl. Generalizing, the
total power can be written as
N 2
Pty ][ ]af%+lb, %] (D24) B

i=]

where the bi's are defined by

R
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b = < ;ilxil;i> (D25)
Vi

The voltage vector iV>> may be written in terms of the voltage

eigenvectors i¢i>', normalized to unity power as

N
lv>= 7§ (aie-JBiz + biejsiz)i¢i> (D26)
i=1
where
v i
lo; > = lg, > (D27)

/< cilxi|;1>

Similarly, Iwi>' is the corresponding normalized current eigenvector

giving rise to

N
[T1>= 7§ (aie"j Biz | bie+jsiz)|wi> ~ (D28)
i=1
where
1 .-1
!wi>-;-i—_I= [6,>. (D29)

It can be easily shown that

< @ile > = Gij (D30)
In order to transform from the power wave formulation back to the

desired voltages and currents, one defines two matrices whose columns

are the voltage and current eigenvectors given by

M, = ( |¢l>,..., [¢N>) (D31)
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Moo= Clog >, 9> (D32)
From equation (D30), it is easily shown that

MM =1 (D33)

and
HV }_g{" =1I. (D34)

In the bounding process of Chapter IV, an inhomogeneous medium
would be replaced by a homogeneous medium with a dielectric comstant
less than or equal to the minimum dielectric constant of the inhomo-
geneous medium. This. typically leads to the use of a vacuum model
2 w? 2 w?

with the (8, = —=) replaced by (R8° = =), where ¢ is the speed of
1 2 o2

1ight in vacuum. In this instance, equation (D13) becomes

2
—d—i- vy -62 s (D35)
dz

The corresponding Ici> and |¢i> would also change to account for the

homogeneity. !




APPENDIX (E)

N TRAVELING WAVE FORMULATION

The voltages and currents on a MTL as described in Appendix (D)

are

- N =18,z +jB.2

v(zy> = § laje” b oav et |l e (E1)

i=1 /

Ny \
1 N [ -jB,z +i8.z || |
! = ) fa e b b et { 0> (£2)
P i=] i 1 /

where |¢i> and lwi> are normalized voltage and current eigenvectors,

a; and bi represent the amplitudes of the ith mode waves traveling in

B AP

the positive and negative (z) directions respectively, and (Bi) is the

propogation constant of the ith mode.

T
0. it e

- -

Using b_‘!v and l_‘_!I matrices as introduced in Appendix (D), equatioms

Y af

(E1) and (E2) can be written in more compact form as

: V(2)> = ¥, (F'(2) 2> + E(2) [b>] (E3)
. 12)> = M (7 () |a> - E(2)[b>] (24)
| where

F(z) = diag [ejeiz, C e ejBNz} (ES)

Equations (E3) and (E4) can be written as

1
¥
i

s g*(z)iv -% M {v(z)> + }_t;il(z)>i (E6)
- -
; 1 \"';l - -
F(z){b> = 3 M|V - M1 (E7
' F(2)ib> = 3 1M [V(2)> - M, 1(2)> )

{
1
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In the above formulas, (ai) is the compiex amplitude of ith

mode such that the power contained in the positive (z) direction is

+ 1
P Ela

: ’

1 (E8)

Hence, the entire power transmitted along the posicive (z) directiom

is

+ 1
Protar = 7 <82 (E9)

Similarly, the total power contained in the negative (2) direction is

- 1
Proral ~ 7 <b[b> (E10)

where it is assumed that there is no transfer of power among different
modes.

It is convenient to introduce a composite MTL, as shown in
Figure (El), with 54 and §3 impedance matrices respectively located at
z = 34 and z = -23 with respect to the origin where the source is
coupled to the MIL [El]. The amplitudes of the ith mode introduced by
the source are agy and bsi‘ The total amplitude a; of the ith mode
congists of ay due to the source and the reflected bsi coming from
the left hand termination at z = -23. From equations (E6) and (E7)

the following relations can be obtained:

T (E1D)

[a(£4)> = % E_t;iv(zap + »_fvlzcz‘,‘)

>
1.+ - N
lb(e,)> = 3 !_b_xllv(£4)> - "-‘v“("a)’l (E12)
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Figure (El).
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By Ohm's law, one obtains
!
|v<£a)> 2,i1(£,)> (E13)
Combining equations (Ell), (El1l2), and (E13), one obtains
[bg,)> = r,laL,)> (E14)

where EA is called the reflection matrix given by

~ = Mt _ + -1
I, = (eyzy - DGz + 1) (E15)
The matrix E& may contain non-zero off-diagonal elements creating L
mode coupling. Similarly, at z = -23, one can obtain . }
|a(-£3)> - g3|b(-z3)> (E16) ﬁ
where
'
+ - -1 ‘
Iy = (Mzaty - D04z + I (E17)

One can also look at the problem in time-domain assuming that the
quasi-TEM waves are non-dispersive, and each mode is launched and

transmitted without a distortion. Assuming that the starting ampli-

tude at (z=0) is denoted by aio(t), then at z = Za the amplitude

becomes

2
a,(©) = ag [c - —:-J (E18)

where v, is the velocity of the ith mode. If the load network comsists

of passive elements such as capacitor and inductors, the shape of the

reflected waves will be distorted as compared to the incident waves.




APPENDIX (F)
COUPLING COEFFICIENTS FOR TRANSVERSE ELECTROMAGNETIC (TEM)
MODE EXCITED BY LOCALIZED CURRENT SOURCES
Figure (Fl) represents an electric current source 3 located inside
a parallel plate waveguide which produces outgoing waves that carry
energy to ports zl and zz. The total electric and magnetic fields

traveling in the positive z direction have been derived by Collin [F1]

as
-j8_z
> <= e -> n
E ) < (en + enz) e (FL
n=1
@ -38 Z
>+ + > n
H nzl e, ( +h )e (F2)

where n stands for the nth outward propagating mode, cér is the wave

amplitude, and Bn is the nth mode propagation constant. The vectors

- -
e and hn are normalized trangverse electric and magnetic fields of the

nth quasi-TEM mode and are real functions normalized to unit power as

- -~ - ,
j ({ ey x hy ) + ds = émn (F3)
s
where ¢ 1s the Kroneker delta and s is the cross section of the wave-
guide. Collin has used the reciprocity theorem for Figure (Fl) and

has obtained

+ _ -1 ( > > + jan
e -—?J(en-enz]-.]'e dv (F4)

v

-
-

where the volume of integration encloses the current J.

POy
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Figure (Fl). A current source excitation of a waveguide [F1l].
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The above method can be used in aperture problems where a wire is
located behind a conducting screen as shown in Figures (¥2). The
incident field from exterior region produces both a radiation field

and a guided transverse electromagnetic wave (TEM) in the interior

region. The radiation field (irad) radiates into a free space and A

the TEM wave propagates along the wire. In order to use the method ;
of Collin, one must assume that the radiated field is negligibie.
Kajfez [F2] has attempted ro justify this assumption in his coupling
formulation [F2]. Davis [F3] has also compared the radiated and the
transmitted TEM energy for such problems to justify the assumption
that only TEM modes need to be considered.

Shown in Figure (F3) are the electric and magnetic dipoles above
a closed aperture which replace the aperture. The discussion of the
dipoie equivalence in aperture problems 1s formulated in Appendix (B).
The situation in Figure (F3) is entirely the same as Figure (Fl) with
the two dipoles :fsm and 3: being the effective sources. Now, omne

can apply the reciprocity method of Collin to obtain

i8 z

+ 1l e *m > e n

C, 3 [ ( o= Jg -e o Jg ) e ds (F3)
Aperture

where the integration is over the surface of the aperture.
The computation is simplified if the source currents are assumed

to take a Dirac delta distribution form of 3(x) and 3(z). TFor such a

distribution equations (Bll) and (Bl2) become

SR RN
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-bm -

Js =cy §(x - xo) §(z - zo) (F6)
(-] -

}’s =c, 8(x - xy) 8(z - z) (F7)

- Substitution of equations (F6) and (F7) in (FS5S) gives

! +i8 2z
| + .1 n 0 -

i <, 5 e hxn(xo, 0 ey eyn(xo, 0) Coy (F8)
| 5. Similarly, one can show that

1 <.
. -jB 2z, r— i
X - . 1 a0 | _ -

. 7 e L hm(xo, 0) Cox eyn(xo, 0) cey] (F9) !

<
K :
'd where the minus on hxn(xo, 0) and in the exponent are due to the

reference direction for propagation in the (-z) direction. Equations L
(F8) and (F9) completely define the source coupling to a wire behind

an aperture.
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